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Abstract— Due to the rapid growth in power demand, both 

electrical network and generation plants have huge expansions. 

Thus, network planning and operation becomes quite 

complicated. One of the most common problems generated due 

to such electric congestion is load forecasting. Accurate 

prediction of grid electricity demand is key to the operation of a 

power utility company. Load forecasting is essential to ensure 

that sufficient capacity is available to maintain system 

frequency whilst minimizing the amount of redundant 

generation and the use of backup peaker plants. The increasing 

penetration of variable renewable energy sources in utility 

generation is resulting in an increased requirement for grid 

flexibility and accurate predictive, especially if the eventual goal 

is the complete phasing out of fossil fuel generation  

 
    Deep neural architectures have recently shown their ability 

to mine complex underlying patterns in various domains. In our 

work, we present a deep recurrent neural architecture to 

unearth the complex patterns underlying the regional demand 

profiles without specific insights from the utilities. The model 

learns from historical data patterns. We show that deep 

recurrent neural network with long-short term memory 

architecture presents a robust methodology for accurate short 

term load forecasting with the ability to adapt and learn the 

underlying complex features over time. In most cases, it matches 

the performance of the latest state-of-the-art techniques and 

even supersedes it in a few cases. 

 
   This study offers a detailed analysis of relevant literature and 

proposes a deep learning methodology for forecasting industrial 

electric usage for the next 24 hour for a specific line.   

I. Introduction  

    Types of electric load forecasting techniques fall into three main 

categories regarding the forecast horizon: STLF (short-term load 

forecasting), MTLF (medium-term load forecasting), and LTLF 

(Long term load forecasting). The authors in [1] present a 

classification based on the data frame used before the forecast, 

including very short-term load forecasting and a framework based 

on several points predicted into the future. In our study, we 

implement short-term forecasting for 24 steps (hours). Load 

forecasting (LF) can offer a great value if the process can be 

automated and operated without human intervention.  

  
   The problem of short-term load forecasting has traditionally been 

viewed as a modeling problem, where load has to be modeled as a 

function of time of day, day of the week, weather, and other social 

factors. The majority of operational and control decisions such as 

load dispatch, reliability analysis, and maintenance planning are all 

based on the load forecasts. 

 

 

 Machine learning for short-term electric load forecasting has 

been studied in prior work. A machine learning pipeline includes 

tasks such as data cleaning and preprocessing, feature construction, 

model selection, hyper parameter optimization, and post processing 

of machine learning models. As these tasks all require complicated 

decision making, the success of machine learning applications 

crucially relies on human machine learning experts, who are familiar 

with this pipeline, select appropriate machine learning models and set 

their hyper parameters. The demand for machine learning 

functionality is growing quite rapidly, and successful machine 

learning applications can be found in an increasing number of sectors. 

Since end users in application domains are normally not machine 

learning experts, there is an urgent need for suitable support in terms 

of tools that are easy to use.  

 

Modern machine learning techniques, such as expert systems [2], 

Artificial Neural Network (ANN) [3], [4], wavelets [5] have been 

deployed and shown encouraging results. Among these, ANNs have 

performed well given their ability to handle the non-linear 

relationships between the load and various underlying factors. The 

demand profiles are generally taken as sequences over time. Hence, 

it is a sequence prediction task given only the historical and current 

information about the sequence. Recently, another class of ANN 

models have emerged, often referred to as deep learning. These 

models are similar to ANN with increased depth and specialized 

approaches for training these networks are currently being developed. 

Most of these models fall under the category of unsupervised 

learning. Unsupervised feature learning [6] performs this function by 

learning feature representations from unlabeled data. Usually, these 

layers of representations are stacked to create deep networks that are 

capable of modeling complex structures in the data. Unsupervised 

feature learning and deep learning have presented a success story for 

feature representation for static data. 

     

     In the context of short-term electrical load forecasting (hourly 

time scale or even shorter) the problem can be considered as a 

sequence prediction problem. A specialized ANN architecture 

referred to as recurrent neural network (RNN) has been successful in 

predicting sequences accurately. Moreover, RNNs have advanced to 

an extent where they have memory which has the ability to learn as 

the data arrives and have shown considerable success in the domain 

of learning relationships and text prediction based on context and are 

called the Long-Short-Term Memories (LSTM). Electrical load can 

be considered as a sequence (time series) which can be modeled using 

LSTM to accurately predict the future demand. 

In this paper we develop a LSTM-Recurrent Neural Network for 

short term electrical load forecasting. The model is general enough 

and can be adapted for other time series where sufficient historical 

data is available. The results obtained are promising and present the 

generalized nature of LSTMs for time series forecasting problems. 

 

 



II. BACKGROUND 

    Short-term load forecasting is a well-studied problem. Accurate 

forecasts for loads are useful in the planning and operation of large 

[7] and micro-power systems [8]. There have been numerous models 

proposed for accurate modeling and prediction of demand. Electricity 

demand forecasting is considered a time-series modeling problem 

[9]. Various time series models such as auto regressive moving 

average (ARMA), generalized auto regressive conditional 

heteroscedasticity (GARCH), and intervention time series models 

have been used to model electrical load forecasting [10], [11]. 

Artificial neural networks (ANN) and other machine learning 

algorithms have proven successful in various tasks such as 

classification, regression and time series modeling [12]. Besides 

ANN, support vector regression is known as a strong predictor for 

achieving global optimum solutions. 

 

     In [13], the authors use support vector regression (SVR) for short-

term load forecasting with two additional improvements in procedure 

for generation of model inputs and subsequent model input selection 

using feature selection algorithms. Another recent work [13] 

combines price and load forecasting using a hybrid time-series and 

adaptive wavelet neural network. In [14], they evaluate the 

effectiveness of some of the newest designed algorithms in machine 

learning to train typical radial basis function (RBF) networks for 24-

h electric load forecasting: support vector regression (SVR), extreme 

learning machines (ELMs), and decay RBF neural networks 

(DRNNs). A comprehensive review of various tools for short term 

load forecasting has been done in [11]. 

 

 

    ANNs were extensively used for regression, classification, and 

time series modeling until the mid-1990, but then got left behind with 

the advent of other novel regression methods. In 2006, the interest in 

neural network research was rekindled by Hinton et. al [15]. They 

showed that much better performance could be achieved using neural 

networks with multiple hidden layers or deep networks. Numerous 

efforts have been made to use the power of deep neural networks for 

time series modeling and forecasting. 

 

   In [16], a deep belief network with multiple restricted Boltzmann 

machines is proposed for time series forecasting. The researchers 

optimized the model’s performance using particle swarm 

optimization (PSO) and present superiority of their approach over 

standard feed forward neural networks and other statistical models 

such as ARIMA models. In [17], the authors conducted simulations 

to compare deep learning architectures with standard neural networks 

for time series forecasting. In [18], several machine learning 

algorithms are presented to address the time series forecasting 

problem, such as multi-layer perceptron, Bayesian networks, K-

nearest neighbor regression, support vector regression, and Gaussian 

processes. Whereas, in [19] the researchers presented the impact and 

usefulness of local learning techniques in dealing with temporal data. 

Till now no literature can be found regarding deep learning algorithm 

being used for modeling and forecasting short term electrical load at 

the regional level for varying time scales. Our work uses the 

fundamentals of deep learning to automatically identify the complex 

features in electrical load and predict accurately and robustly at 

varying time scales using LSTM-recurrent neural networks. 

 

III. RECURRENT NEURAL NETWORK 

      Recurrent neural networks with Long Short-Term Memory have 

emerged as a reliable tool for sequential data series modeling, 

analysis, and forecasting [22]. Usually, techniques solving problems 

associated with sequential data such as language, and audio etc. used 

hand-crafted features. LSTMs are found to be effective at capturing 

long-term temporal dependencies without suffering from the 

optimization hurdles that plague simple recurrent networks (SRNs) 

[23], and they have been used to advance the state of the art for many 

difficult problems. The key component of a LSTM architecture is a 

memory cell which retains its state over time, and non-linear gating 

units which regulate the information flow in the cell.  

      LSTMs enable backpropagation of error across the network and 

in time. A controlled error propagation allows for networks to learn 

over large time steps thereby enabling relational learning across vast 

time differences.  

     The basic unit in the hidden layer of a LSTM network is the 

memory block. A memory block contains one or more memory cells 

and a pair of adaptive, multiplicative gating units which gate input 

and output to all cells in the block. Memory blocks allow cells to 

share the same gates, thus reducing the number of adaptive 

parameters. 

 

 

 

 

      The equations for LSTM under consideration are split into two 
parts: forward pass and the back-propagation through time.  

 

Forward Pass 

      Let N be the number of LSTM blocks and M be the number of 

inputs. We have the following weights: The alphabets W, R, p, and b 

denote the weight associated with input, recurrent, peephole, or bias 

connections. The subscripts z, s, f, and o refer to the weights 

connecting the input gate, blocking gate, forget gate, and the output 

gate, respectively. 



 Input Weights: Wz, Ws, Wf , Wo ∈  R𝑁×𝑀 

 Recurrent Weights: Rz, Rs, Rf , Ro ∈ R𝑁×𝑀 

 Peephole Weights: ps, pf , po ∈ R𝑁 

 Bias Weights: bz, bs, bf , bo ∈ R𝑁 

    

     All of the arrows entering the memory block are comprised of the 

recurrent connection weights and the input weights. 

    A recurrent neural network with a memory block M, can be 

represented as shown in Figure 2. Here, xt represents the input, ht 

represents the output, M denotes the memory block. The curved 

arrow connecting the memory block to itself is the recurrent 

connection. 

 

 

     To visualize the RNN for sequence learning at time instance t, it 

can be unfolded into a network with horizontal connections as shown 

in Figure 3. The subscripts 0, 1, ..., t−1, t represent the time lag and 

are a result of unfolding the recurrent connection to the memory cell. 

    The output at any time instant from the LSTM-RNN is dependent 

on previous inputs as the horizontal connection or recurrent 

connection weights govern the strength of dependence. The colored 

blocks in Figure 3 show one possible case where the output ht is 

dependent on 𝑥𝑡−1, ..., x1, and x0. 

 

    The input vector to the network is given as 𝑥𝑡at time t, σ, g, h are 

point-wise non-linear functions with 𝜎(𝑥) =  
  1 

1+𝑒−𝑥 being the logistic 

sigmoid, tangent hyperbolic is used for block input and output 

activation functions respectively. We denote the point-wise 

multiplication of two vectors by . The first phase of LSTM training 

is the forward pass which is presented in Algorithm 1 as adapted from 

[24]. 

 

 

 

 

    The second part of the algorithm is the backpropagation through 

time, we consider here ∆t is a vector of deltas (or gradients) passed 

down from the previous layer. Let us consider E to be the loss 

function, and is generally referred to as 
𝜕𝐸 

𝜕𝑦𝑡
 , which does not include 

the recurrent dependencies. Therefore, there is a need for a special 

procedure to evaluate the deltas inside the LSTM block presented in 

Algorithm 2 as adapted from [24]. 

 

 

 

      Finally, the deltas for the inputs are only required if there is a 
training layer below them and is given by the Equation 1. 

     

     The gradients of the weights are calculated based on the Equation 
2 - 7. 

 



 

 

     There are numerous variants of LSTM which have been studied 

in the literature such as: no input gate, no forget gate, no output gate, 

no input activation function, no output activation function, coupled 

input and forget gate, no peepholes, and full gate recurrence [24]. It 

is observed through experiments that for our purpose of electrical 

load forecasting, LSTM in its vanilla form performs well. 

 

     In the next section, we present the application of LSTM networks 

to the task of sequential data modeling and time series forecasting in 

our case study for short-term electrical load for the Eastern Province, 

Saudi Arabia. 

    

IV. EXPERIMENTS 

 

     LSTM-RNN for short term electric load forecasting is used as an 

autoregressive model where it can only access input from the current 

time step. Various competitors to LSTM such as multi-layer 

perceptron see several consecutive inputs in a given time window 

when trained by back-propagation. 

 

 

 

      In Figure 4, X(t) denotes the input, S is a scaling factor, and X(t 

+ p) is the prediction p time steps ahead. 

 

Data 

    The data for electrical load are usually maintained on an daily 

basis. Electrical load has complex and non-linear relationships. The 

electrical load data for the line XXXX is obtained from Saudi 

Electricity Company database. We have used 3 years of (from 2017 

to 2020) historical data for training and validation of our LSTM 

network in the ratio of 70% for training and 30% for testing and 

validation. 

 

 

Fig. 5: Daily power demand for 3 years in KSA - East for a specific 

line 

 

     The data can be analyzed on an hourly time scale but large scale 

(annual) visualization of historical data reveals other hidden 

characteristics which remain unknown at small scale (daily). As in 

Figure 6 we see a pattern in the energy demand during varying 

seasons on visualizing annual hourly data. 

 

Network Topology 

    The input units are fully connected to a hidden layer consisting of 

memory block with 1 cell each. The cell outputs are fully connected 

to the cell inputs, to all gates, and to the output units. All the gates, 

the cell, and the output units are biased. Bias weights are initialized 

in steps of -0.5 starting from -0.5 for each block with forget gates 

having symmetric biases on the positive side. All other weights are 

initialized in the range [-0.1,+0.1]. The cell input function g is 

sigmoid in the range [- 1,+1] and the output function h is tangent 

hyperbolic. We used a constant learning rate of α = 10−3 . We used 

mean squared error as our loss function for optimizing the parameters 

of our LSTM-RNN.  

    We used Adam as the optimization algorithm for our loss function. 

It is an algorithm for first-order gradient based optimization of 

stochastic objective functions, based on adaptive estimates of lower-

order moments. 

 

Results 

    The overall goal of the network N is to predict the future load at 

time instance t + T, where t is the current time. The target for the 

network N is the difference between the values x(t + p) of the 

electrical load time series p time steps ahead and the current value, 

with a scaling factor S.  

   Therefore N(t) = S.(x(t + p) − x(t)) = S.∆x(t). The scaling factor is 

used to bring all the values in the range [-1,+1]. The same scaling 

factors are used for training and testing purposes. We do the reverse 

when evaluating the predicted values. 

   The square root of the mean/average of the square of all of the error 

is a good measure of performance of the algorithm. The use of root 

mean square error (RMSE) is very common and it makes an excellent 

general purpose error metric for numerical predictions. 
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   Compared to the similar Mean Absolute Error, RMSE amplifies 

and severely punishes large errors. If the RMSE is normalized then it 

is referred to as Normalized RMSE or NMRSE and is given by 

Equation 8. 

 

 

      In Figure 7, the annual daily power demands (blue color) and 

predictions (yellow color) are presented and compared to each other.  

 

 

Fig 6. A comparison between the real annual power demand (Blue 
Color) and the predictions (Yellow Color)  

 

                          V. CONCLUSIONS    

         In our work we implemented LSTM deep recurrent neural 

network for modeling short-term electrical load time series for the 

Province of Ontario, Canada. Short-term electrical load modeling has 

been a challenging task and is important for reliable and profitable 

operation of electricity markets and utilities . It is well established 

that electrical load is dependent on a large number of underlying 

factors which are hard to identify and model using currently 

established techniques. Deep learning has become a very promising 

approach for pattern recognition for complex and high dimensional 

data sets. We used the deep learning approach to model sequential 

short term electrical demand time series. The results from 

LSTMRNN are reliable, robust, and comparable with other state of 

the art techniques. 

 

      The power of LSTM can be utilized for even more complex tasks 

given the ability of these networks to mine complex hidden patterns 

in unlabeled data which is present in large quantities. We wish to 

extend the LSTM model for forecasting not only short term loads to 

even finer levels of granularity such as 5 min and 10 min. This would 

enable ease in integration of the renewable source of energy with the 

existing power systems. 
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