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Abstract 

 

In this paper, we consider the problem of automatic diagonal loading for a linearly 

constrained minimum power beamformer. The proposed method presented in this paper 

relies on reformulating the linear constrained minimum power problem into a generalized 

sidelobe canceller formulation to obtain an unconstrained least-squares problem. Then, using 

the bounded perturbation regularization approach to solve the regularized-least-squares 

problem. The bounded perturbation regularization method assumes a perturbation matrix 

with a bounded norm which is added to the linear transformation matrix of the least-squares 

problem in order to enhance the singular-value structure of the matrix. Compared to 

different diagonal loading methods, the proposed method shows superiority in performance 

when small sample size of data is available. 

 

 

1. Introduction 

 

In many systems, received-spatially-propagating signals may badly be influenced by 

interference signals. Temporal filtering cannot separate the desired signal from interferers when 

both occupy the same temporal frequency band. However, usually the desired and interfering 

signals arise from distinct spatial locations. Hence, this spatial separation can be exploited to isolate 

the desired signal from interfering signals via a spatial filter. Then, the process that is used in 

conjunction with an array of antennas, sensors ..., etc., that provide a versatile form of spatial 

filtering is called beamforming; hence, the beamformer is the processor that performs spatial 

filtering when sampling is discrete [1].  

Beamforming techniques are common in many communication and satellite systems. They also 

emerge in a wide range of other applications like RADAR (RAdio Detection And Ranging), 

SONAR (SOund Navigation And Ranging), imaging, biomedical; etc [1].  

Linearly Constrained Minimum Power (LCMP) beamformer constrains the response of the 

beamformer such that signals from the direction of interest are passed with specified gain and 

phase. The chosen weights minimize output variance subject to response constraint. This results in 

preserving the desired signals while eliminating the effect of interference signals and noise arriving 

from different directions [1], [2].  

The second order statistics of the data play a key role in evaluating beamformer 

performance through estimating the data covariance matrix. Practically, the covariance matrix is 

unknown and an estimation of it is required. A popular estimator of the covariance matrix is the 

sample covariance matrix. However, this estimator is unreliable when data is limited [3].  Another 

practical difficulty is that the receiver does not have accurate spatial characteristic of a specific 

scenario. This makes filter designing methods rely on assumptions that might not correspond 

completely to the actual parameters. Several reasons may casue this mismatch which include 

nonstationarity of the environment, multipath, steering vector errors, etc. [3]. 



 

 

 

As a result of these challenges, a typical beamformer does not perform well, and Robust Adaptive 

Beamforming (RAB) techniques are required to mitigate the effect of such mismatches [3]. In the 

literature, a variety of RAB techniques were proposed. 

Interference-plus-Noise Covariance (INC) matrix reconstruction methods aim to reduce the effect 

of the desired signal by reconstructing the INC [4], [5]. However, the reconstruction process 

increases the computational complexity. An alternative RAB technique is the uncertainty set based 

technique which estimates the steering vector of the desired by specifying a spherical uncertainty 

constraint on the steering vector [6]. However, the performance of this method is limited to low 

Signal to Noise Ratio (SNR). In addition, this method is computationally inefficient since it requires 

solving second-order cone programming problems [5]. 

Steering vector projection is another variation of RAB techniques [7], [8]. The steering 

vector is replaced by its projection on the signal-plus-interference subspace of the sample 

covariance matrix, which reduces the effect of noise disturbance. The disadvantages of these 

methods are that they perform poorly at low SNRs; also, they require perfect knowledge of the 

dimension of the signal-plus-interference subspace. 

Diagonal Loading (DL) is a widely used RAB technique in which the diagonal entries of the 

sample covariance matrix are altered by a positive value. This technique is also known as 

regularization in the statistical literature [9]. DL’s performance depends on the choice of a scalar 

loading parameter. Choosing the optimal DL automatically is problematic [3], there is no rigorous 

way for selecting the parameter since it depends on the noise level [10]. A number of methods were 

proposed to overcome the problem of automatically choosing the DL parameter. DL methods are 

efficient if the exact steering vectors of the desired signal and interference signals are known or 

small mismatches exist. 

In this paper, we propose a robust LCMP beamformer based on the bounded perturbation 

regularization approach [11]. To deal with the constraints in the LCMP beamforming problem, we 

used the generalized sidlelobe canceller of LCMP that reformulates the problem to an unconstrained 

least squares problem. The estimated sample covariance matrix which is included in the linear 

transformation matrix of the LS problem is normally ill-conditioned which makes using 

regularization approach desirable. The regularization parameter is computed using a procedure that 

combines a constrained equation with a mean squared error criterion. This allows for automatic 

adjustment of regularization parameter required by the proposed robust beamformer. 

 

 

2. LCMP Beamformer with Automatic Diagonal Loading 

 

Typically, the output of a beamformer is obtained from linear combination of the spatially sampled 

time-series data collected by each element of the array at the input as depicted in Figure (1). The 

output of a narrowband beamformer is obtained by multiplying a signal  ( )      with a complex 

weight        and summing the result to obtain [12] 

 

 

 

 ( )     ( ) (1) 



 

 

 
Figure 1. A beamformer. 

 

The signal   ( ) constitutes of    narrowband far-field signals impinging on an array of   elements 

(  >  ), and a vector of Gaussian noise samples,  ( )      is. The     snapshot of signals received 

by an array is given by [13] 

 

 

where    denotes the steering vector associated with signal  , the subscript   denotes a set of 

narrowband signals with     (for the desired signal),             (for interference signals). 

For the LCMP beamformer, these weights are selected to minimize the output power of the 

beamformer as follows [12]: 

 

where          ( )  ( )  is the data covariance matrix,            is the constraint matrix, and   

is a constraint vector with   elements. 

 

By linearly constraining the weights to satisfy a certain response,   , we ensure that any signal 

impinging on the array at an angle is passed to the output with the required response. 

 

Using the Lagrange multipliers, the optimum solution of (3) is given by 

Practically, the true covariance matrix is unknown; thus, it is usually replaced by the sample 

covariance matrix 

 

where   is the number of snapshots. The estimated weights of the LCMP beamformer using (5) are 

given by 
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The generalized sidelobe canceller provides an alternative implementation of the LCMP 

beamformer. Basically, it changes the constrained minimization problem introduced in (3) into 

unconstrained form by decomposing   into two components; the first one is in the constraint 

subspace, and the second one is orthogonal to the first [12], i.e., 

 

 

 

where        is a fixed quiescent weight vector and          (   )is a blocking matrix. 

By substituting (7) in (3) and replacing    with  ̂ , the problem can be reformulated as the 

following unconstrained LS: 

 

 

where    ̂ 
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   . The above minimization can be shown 

corresponds to a linear regression model with noise, which is a suitable model for applying 

regularization to estimate   . The Regularized Least Squares (RLS) problem reads as follows: 

 

 

which has the closed-form solution 

 

 

It is remarkable from (10) that we consider regularizing    , which is of dimension (   )× 

(   ) instead of  ̂  which is of an   ×   dimension. Hence, the inversion (10) is valid for fewer 

snapshots. 

The proposed selection method of the regularization parameter is based on minimizing the mean 

squared error in estimating   , i.e, 

 

where tr (.) denotes the matrix trace. 

 

A detailed procedure following this step can be found in [11] and [14]. At the end, we automatically 

select the regularization parameter (diagonal loading) as a root for the following Bounded 

Perturbation Regularization (BPR) equation: 

 

where we use the Singular Value Decomposition (SVD) of        ,  and      . 

Finally, we substitute the regularization parameter, γ , obtained from (12) in the loaded version of 

(6), to obtain the following: 
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3. Summary of the Method 

 

The following steps summarize the method: 

 Step 1: From the received data,  ( ), estimate  ̂  according to Equation (5). 

 Step 2: Estimate the steering vectors of the desired and the interference signals: This is to 
composite matrix,    

 Step 3: Use the GSC implementation: This requires calculating matrix A which is defined 

just after Equation (8). Calculating A requires estimating the block matrix B which is an 

arbitrary matrix chosen to be orthogonal to the constraint matrix (i.e.,      ). 

 Step 4: Do the singular value decomposition (SVD) of    
 Step 5: Use Newton’s method to solve the BPR equation (12). 

 Step 7: Calculate the weights according to Equation (13). 
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4. Performance Evaluation 

 

To evaluate performance, the output signal-to-interference and-noise-ratio (SINR) is considered. 

Equation (2) can be written as  ( )     ( )      ( ), where    ( )       ( ) , and    ( )  

 ∑     
       ( )   ( ). The output SINR is defined as follows: 

 

 

 

 

where              ( )   
 ( )  is the INC matrix,   

  is the power of the signal of interest, and 

    is the actual steering vector of the desired signal. 

 

In all scenarios, we compare the proposed LCMP-BPR with HKB [15], [16], elliptical regularized 

sample covariance matrix (ELL-RSCM) [17], GLC [10], multichannel wiener filtering based noise 

reduction with truncated minimum mean square error criterion (MWF-TMMSE) [13], and 

tridiagonal loading (TRI) [18] methods. Similar to the proposed method, HKB and TRI methods are 

one parameter diagonal loading methods. The other methods, Ell-RSCP, GLC and MWFTMMSE, 

estimate the covariance matrix via a shrinkage method that uses two regularization parameters. 

 

A uniform linear array (ULA) of      elements with        between consecutive elements is 

used in all simulations, where   is the wavelength. Uncertainty in the direction of arrival (DOA) of 

the signal of interest is modeled as a uniform distribution in the range         . We consider six 

interference signals (   ) impinging on the array. 

 

The signal of interest and interference signals are complex Gaussian data generated randomly with 

SNR = 5 dB and Interference-to-Noise Ratio (INR = 20 dB). The noise is complex white Gaussian 

with unit-norm power. Source locations are randomly chosen in every iteration. All SINR curves 

are obtained by averaging over         independent trials. For this LCMP beamformer, three 

signals out of the six interference signals are constrained to nulls, i.e., the constraint vector is 
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Figure 2  shows the output SINR versus SNR. As can be seen from the figure, for SNR ≤ 10 dB, the 

proposed LCMP-BPR method achieves the best performance among all the methods. For 10 dB < 

SNR ≤ 20 dB, LCMP-BPR exhibits an inferior performance compared to the other methods except 

HKB. 

 

Figure 3  shows the output SINR versus the number of snapshots, K. As can be seen, when N − P < 

K < 2N, LCMP-BPR outperforms all the other techniques. However, for 2N ≤ K ≤ 3N, HKB shows 

a slight advantage over the proposed LCMP-BPR 

 

 

 

5. Conclusion 

 

We propose the LCMP-BPR beamformer based on the bounded perturbation regularization 

approach. A generalized sidelobe canceller implementation of a linearly constrained minimum 

power was considered. The constrained LCMP problem was reformulated into an unconstrained 

least squares problem. Simulation results show that the proposed LCMP-BPR method is 

effective in scenarios with a ULA of N elements, P constraints, and limited number of snapshot 

K ∈ (N − P, 3N]. 

 

  

Figure 3 SINR vs. SNR ( K = 7 ) Figure 2 SINR vs. K (SNR = 5 dB ). 
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